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We propose a model of binary opinion in which the opinion of the individuals changes according to the state
of their neighboring domains. If the neighboring domains have opposite opinions then the opinion of the
domain with the larger size is followed. Starting from a random configuration, the system evolves to a
homogeneous state. The dynamical evolution shows a scaling behavior with the persistence exponent �
�0.235 and dynamic exponent z�1.02�0.02. Introducing disorder through a parameter called rigidity coef-
ficient � �probability that people are completely rigid and never change their opinion�, the transition to a
heterogeneous society at �=0+ is obtained. Close to �=0, the equilibrium values of the dynamic variables
show power-law scaling behavior with �. We also discuss the effect of having both quenched and annealed
disorder in the system.
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A number of models which simulate the formulation of
opinion in a social system have been proposed in the physics
literature recently �1�. Many of these show a close connec-
tion to familiar models of statistical physics, e.g., the Ising
and the Potts models. Different kinds of phase transitions
have also been observed in these models by introducing suit-
able parameters. One such phase transition can be from a
homogeneous society, where everyone has the same opinion
to a heterogeneous one with mixed opinions �2�.

In a model of opinion dynamics, the key feature is the
interaction of the individuals. Usually, in all the models, it is
assumed that an individual is influenced by its nearest neigh-
bors. In this Brief Report, we propose a one-dimensional
model of binary opinion in which the dynamics is dependent
on the size of the neighboring domains as well. Here an
individual changes his/her opinion in two situations: first
when the two neighboring domains have opposite polarity
and, in this case, the individual simply follows the opinion of
the neighboring domain with the larger size. This case may
arise only when the individual is at the boundary of the two
domains. An individual also changes his/her opinion when
both the neighboring domains have an opinion which op-
poses his/her original opinion, i.e., the individual is sand-
wiched between two domains of same polarity. It may be
noted that for the second case, the size of the neighboring
domains is irrelevant.

This model, henceforth referred to as model I, can be
represented by a system of Ising spins, where the up and
down states correspond to the two possible opinions. The
two rules followed in the dynamical evolution in the equiva-
lent spin model are shown schematically in Fig. 1 as cases I
and II. In the first case, the spins representing individuals at
the boundary between two domains will choose the opinion
of the left side domain �as it is larger in size�. For the second
case, the down spin flanked by two neighboring up spins will
flip.

The main idea in model I is that the size of a domain
represents a quantity analogous to “social pressure,” which is
expected to be proportional to the number of people support-
ing a cause. An individual, sitting at the domain boundary, is
most exposed to the competition between opposing pressures
and gives in to the larger one. This is what happens in case I

shown in Fig. 1. The interaction in case II, on the other hand,
implies that it is difficult to stick to one’s opinion if the entire
neighborhood opposes it.

Defining the dynamics in this way, one immediately no-
tices that case II corresponds to what would happen for spins
in a nearest-neighbor ferromagnetic Ising model �FIM� in
which the dynamics at zero temperature is simply an energy
minimization scheme. However, the boundary spin in the
FIM behaves differently in case I; it may or may not flip as
the energy remains same. In the present model, the dynamics
is deterministic even for the boundary spins �barring the rare
instance when the two neighborhoods have the same size in
which case the individual changes state with 50% probabil-
ity�.

In this model, the important condition of changing one’s
opinion is the size of the neighboring domains, which is not
fixed either in time or space. This is the unique feature of this
model and, to the best of our knowledge, such a condition
has not been considered earlier. In the most familiar models
of opinion dynamics such as the Sznajd model �3� or the
voter model �4�, one takes the effect of nearest neighbors
within a given radius and, even in the case of models defined
on networks �5�, the influencing neighbors may be nonlocal
but always fixed in identity.

We have done Monte Carlo simulations to study the dy-
namical evolution of the proposed model from a given initial
state. With a system of N spins representing individuals, at
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FIG. 1. �Color online� Dynamical rules for model I: in both
cases, the encircled spins may change state; in case I, the boundary
spins will follow the opinion of the left domain of up spins which
will grow. For case II, the down spin between the two up spins will
flip irrespective of the size of the neighboring domains.
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each step, one spin is selected at random and its state up-
dated. After N such steps, one Monte Carlo time step is said
to be completed.

If N+ is the number of people of a particular opinion �up
spin� and N− is the number of people of opposite opinion
�down spin�, the order parameter is defined as m= �N+
−N−� /N. This is identical to the �absolute value of� magneti-
zation in the Ising model.

Starting from a random initial configuration, the dynamics
in model I leads to a final state with m=1, i.e., a homoge-
neous state where all individuals have the same opinion. It is
not difficult to understand this result; in the absence of any
fluctuation, the dominating neighborhood �domain� simply
grows in size ultimately spanning the entire system.

We have studied the dynamical behavior of the fraction of
domain walls D and the order parameter m as the system
evolves to the homogeneous state. We observe that the be-
haviors of D�t� and m�t� are consistent with the usual scaling
behavior found in coarsening phenomena; D�t�� t−1/z with
z=1.00�0.01 and m�t�� t1/2z with z=0.99�0.01. These
variations are shown in Fig. 2.

We have also calculated the persistence probability that a
person has not change his/her opinion up to time t. Persis-
tence, which in general is the probability that a fluctuating
nonequilibrium field does not change sign up to time t,
shows a power-law decay behavior in many physical phe-
nomena, i.e., P�t�� t−�, where � is the persistence exponent.
In that case, one can use the finite-size scaling relation �6,7�

P�t,L� � t−�f�L/t1/z� . �1�

For finite systems, the persistence probability saturates at a
value �L−� at large times. Therefore, for x�1, f�x��x−�

with �=z�. For large x, f�x� is a constant. Thus, one can
obtain estimates for both z and � using the above scaling
form.

In the present model, the persistence probability does
show a power-law decay with �=0.235�0.003, while the
finite-size scaling analysis made according to Eq. �1� sug-
gests a z value 1.04�0.01 �Fig. 3�. Thus, we find that the

values of z from the three different calculations are consis-
tent and conclude that the dynamic exponent z=1.02�0.02.

It is important to note that both the exponents z and � are
quite different from those of the one-dimensional Ising
model �8� and other opinion/voter dynamics models �9–11�.
Specifically, in the Ising model, z=2 and �=0.375 and, for
the Sznajd model, the persistence exponent is equal to that of
the Ising model. This shows that the present model belongs
to an entirely different dynamical class.

The model I described so far has no fluctuation. Fluctua-
tions or disorder can be introduced in several ways. We adopt
a realistic outlook: since every individual is not expected to
succumb to social pressure, we modify model I by introduc-
ing a parameter � called rigidity coefficient, which denotes
the probability that people are completely rigid and never
change their opinions. The modified model will be called
model II, in which there are �N rigid individuals �chosen
randomly at time t=0�, who retain their initial state through-
out the time evolution. Thus, the disorder is quenched in
nature. The limit �=1 corresponds to the unrealistic nonin-
teracting case when no time evolution takes place; �=1 is in
fact a trivial fixed point. For other values of �, the system
evolves to a equilibrium state.

The time evolution changes drastically in nature with the
introduction of �. All the dynamical variables such as order
parameter, fraction of domain wall, and persistence attain a
saturation value at a rate which increases with �. Power-law
variation with time can only be observed for ��0.01 with
the exponent values same as those for �=0. The saturation or
equilibrium values, on the other hand, show the following
behavior:

ms � N−�1�−�1,

Ds � ��2,

Ps = a + b��3, �2�

where in the last equation a�10–2 and �3��0.36� are
weakly dependent on N. The values of the exponents are
�1=0.500�0.002, �1=0.513�0.010, and �2=0.96�0.01
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FIG. 2. �Color online� Growth of order parameter m with time
for two different system sizes along with a straight line �slope 0.51�
shown in a log-log plot. Inset shows the decay of fraction of domain
wall D with time.
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FIG. 3. �Color online� The collapse of scaled persistence prob-
ability versus scaled time using �=0.235 and z=1.04 is shown for
different system sizes. Inset shows the unscaled data.
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�Figs. 4 and 5�. The variation of ms with � is strictly speaking
not valid for extremely small values of �. However, at such
small values of �, it is difficult to obtain the exact form of the
variation numerically.

It can be naively assumed that the N� rigid individuals
will dominantly appear at the domain boundaries such that in
the first-order approximation �for a fixed population�, D
�1 /�. This would give m�1 /��, indicating �1=0.5 and
�2=1. The numerically obtained values are in fact quite
close to these estimates.

The results obtained for model II can be explained in the
following way. With ��0, the domains cannot grow freely
and domains with both kinds of opinions survive making the
equilibrium ms less than unity. Thus, the society becomes
heterogeneous for any �	0 when people do not follow the
same opinion any longer. The variation of ms with N shows
that ms→0 in the thermodynamic limit for �	0. Thus, not
only does the society become heterogeneous at the onset of
�, it goes to a completely disordered state analogous to the
paramagnetic state in magnetic systems. Thus, one may con-
clude that a phase transition from a ordered state with m=1
to a disordered state �m=0� takes place for �=0+. It may be
recalled here that m=0 at the trivial fixed point �=1 and,
therefore, the system flows to the �=1 fixed point for any
nonzero value of �, indicating that �=1 is a stable fixed
point. The saturation values of the fraction of domain walls
do not show system size dependence for �=0+ further sup-
porting the fact that the phase transition occurs at �=0.

The effect of the parameter � is therefore very similar to
thermal fluctuations in the Ising chain, which drives the latter
to a disordered state for any nonzero temperature, �=1 being
comparable to infinite temperature. However, the role of the
rigid individuals is more similar to domain walls which are
pinned, rather than thermal fluctuations. In fact, the Ising
model will have dynamical evolution even at very high tem-
peratures; while in model II, the dynamical evolution be-
comes slower with �, ultimately stopping altogether at �=1.
This is reflected in the scaling of the various thermodynami-

cal quantities with �, e.g., the order parameter shows a
power-law scaling above the transition point.

Since the role of � is similar to domain-wall pinning, one
can introduce a depinning probability factor 
, which in this
system represents the probability for rigid individuals to be-
come nonrigid during each Monte Carlo step. 
 relaxes the
rigidity criterion in an annealed manner, in the sense that the
identity of the individuals who become nonrigid is not fixed
�in time�. If 
=1, one gets back model I �identical to model
II with �=0� whatever be the value of � and, therefore, 

=1 signifies a line of �model I� fixed points, where the dy-
namics leads the system to a homogeneous state.

With the introduction of 
, one has effectively a lesser
fraction �� of rigid people in the society, where

�� = ��1 − 
� . �3�

The difference from model II is, of course, that this effective
fraction of rigid individuals is not fixed in identity �over
time�. Thus, when ��0, 
�0, we have a system in which
there are both quenched and annealed disorder. It is observed
that for any nonzero value of 
, the system once again
evolves to a homogeneous state �m=1� for all values of �.
Moreover, the dynamic behavior is also the same as model I
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FIG. 5. �Color online� Scaled saturation value of ms decays with
the rigidity coefficient �. Inset shows the unscaled data.
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FIG. 6. The flow lines in the �-
 plane: any nonzero value of �
with 
=0 drives the system to the disordered fixed point �=1. Any
nonzero value of 
 drives it to the ordered state �
=1, which is a
line of fixed points� for all values of �.
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FIG. 4. �Color online� Saturation values of fraction of domain
walls Ds and persistence probability Ps �shown in inset� increase
with rigidity coefficient � in a power-law manner. There is no sys-
tem size dependence for both quantities.
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with the exponents z and � having identical values. This
shows that the nature of randomness is crucial as one cannot
simply replace a system with parameters ���0,
�0	 by
one with only quenched randomness ����0,
�=0	, as in
the latter case, one would end up with a heterogeneous soci-
ety. We therefore conclude that the annealed disorder wins
over the quenched disorder; 
 effectively drives the system
to the 
=1 fixed point for any value of �. This is shown
schematically in a flow diagram �Fig. 6�. It is worth remark-
ing that it looks very similar to the flow diagram of the
one-dimensional Ising model with nearest-neighbor interac-
tions in a longitudinal field and finite temperature.

In summary, we have proposed a model of opinion dy-
namics in which the social pressure is quantified in terms of
the size of domains having the same opinion. In the simplest
form, the model has no disorder and self-organizes to a ho-
mogeneous state, in which the entire population has the same
opinion. This simple model exhibits coarsening with expo-
nents which are drastically different from those of other
known one-dimensional models. With disorder, the model

undergoes a phase transition from a homogeneous society
�with an order parameter equal to one� to a heterogeneous
one, which is fully disordered in the sense that no consensus
can be reached as the order parameter goes to zero in the
thermodynamic limit. With both quenched and annealed ran-
domness present in the system, the annealed randomness is
observed to drive the system to a homogeneous state for any
amount of the quenched randomness.

Many open questions still remain regarding models I and
II, the behavior in higher dimensions being one of them. In
fact, a full understanding of the phase transition occurring in
model II reported here is an important issue. Although the
phase transition has similarities with the one-dimensional
Ising model, there are some distinctive features which should
be studied in more detail.
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